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1 Introduction

The geometry of a real surface can be very complex and diverse. It also makes the modeling of
a physical process more difficult since different surface features have different effects. Therefore,
it is very important to quantify those surface characteristics properly. Diversity of the surface
characteristics is also known as surface roughness and parameters which should describe it are
called surface roughness indices. They are introduced in order to improve or simplify modeling
of a physical process.

Hoffman and Krotkov (1989) noted that a set of indices should be used for a roughness
description instead of a single index because the diversity of surface features is much higher
than the capacity of one roughness index to characterize them. However, for some applications,
it was reported (Verhoest et al. 2008) that in past years there was a tendency to characterize
surface roughness by using just one of the most popular indices like ACF, standard deviation
or correlation length. This is our motivation to investigate the relation of roughness indices to
particular surface features and to broaden the understanding of surface roughness.

In this report we offer an interpretation of the common roughness indices using several facade
samples, all of them manifested with different roughness and surface features. The study also
examines:
• cases when it is appropriate to employ a particular index,

• the index ability either to characterize prominent features or to generally describe surface
complexity,

• the influence of several processing operators like resampling, detrending and smoothing,
and

• the index transition over several scales.

The report is organized as follows: Section 2 discusses characteristics which are beneficial
for roughness indices. Then, within the same section, the most common roughness indices are
reviewed and then classified. In Section 4 a data set for index testing is introduced. Moreover, the
section includes: (a) the description of the instrument used for data aquisition, and (b)applied
preprocessing steps. Results are summarized in Section 5.

2 Surface roughness

The section introduces aspects of surface roughness and relates them to applications. Based on
these aspects, roughness indices will be later discussed and classifed.

2.1 Roughness analysis

Although the understanding of roughness is diverse over the listed disciplines, there are some
important tasks which are common for almost any roughness analysis. Firstly, it is important
to define minimum roughness. This is the minimum component of roughness significant for
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an accurate process description. In the runoff modeling and road roughness, for example, the
minimum roughness may be at cm to mm scale, while in the backscatter modeling it may be at cm
to dm scale. Moreover, the minimum roughness rules the choice of a measurement instrument,
since the sampling interval of an instrument has to be at least two times smaller than the size
of the minimum roughness feature (the Sampling Theorem). Second important task is to define
estimating unit for roughness analysis. This gives a basis for both spatial analysis and mapping
of surface roughness. The results of the later are digital roughness models (DRM) which can be
used as inputs in numerical models, e.g. runoff models. The resolution of the DRM, i.e. the size
of the estimating unit, primarily depends upon the sampling interval and, usually, the smaller is
the better. Next important task is detrending. This procedure should separate the topography
component described by the numerical model from roughness. In most cases, models consider
just local slope, thus a simple linear detrending is usually enough. Finally, the last task is
to define appropriate roughness measure to characterize roughness within the estimating unit.
Depending on the complexity of the roughness, this measure can be a combination of roughness
indices of just one index.

New technologies for data acquisition have significantly improved the resolution of DRMs.
Surface roughness can be now analyzed at resolutions of 1-3m by point clouds derived from
terrestrial laser scanning, airborne laser scanning and image matching. However, in some ap-
plications, this DRM resolution is significantly higher than an area at which surface roughness
has to be modeled. In theoretical backscatter models, for example, this area is equal to the
resolution of a synthetic aperture radar (SAR) image, typically 50-100m, while in runoff mod-
eling, roughness should be described for a whole catchment or sub-catchment. At these areas,
roughness may be highly heterogeneous, containing sub-regions of different roughness states.
These roughness domains have to be identified and delineated, which should be treated as a
separate task in roughness analysis.

In some applications, like runoff modeling, the identification and delineation is enough, while
in applications like backscatter modeling, it should be followed by a special characterization
of the roughness heterogeneity. For example, a pixel of a SAR image may relate to an area
that consists of two tillage stats, e.g. plowed and harrowed fields. They carry quite distinctive
roughness patterns and will influence the backscatter signal differently. Therefore, roughness
for that pixel should be described differently than for pixels associated with a homogeneous
roughness state. In the runoff modeling, however, it will be enough just to delineate the two
roughness states and to assign appropriate hydraulic resistance value to each, e.g. Manning’s
values.

2.2 Roughness dimensions

High resolution DRMs certainly provides a big advantage in roughness analysis. But, it is also
important to understand some properties of surface roughness to that end. These properties
help in describing different types of roughness, and therefore, will be called dimensions here.
The roughness dimensions pertain to roughness of an area which is, in our case, the spatial unit
at which roughness has to be described, e.g. the resolution of a SAR image or the size of a
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catchment.

2.2.1 Stationarity

Roughness that has the same characteristics at each location of an area is considered to be
stationary in this area. Within the area of stationary roughness, a roughness index will always
have the same value. However, this is usually not possible in praxis, thus the index values are
rather randomly distributed around a value. It should be noted that this property depends
upon the measure, i.e. a roughness index, and therefore, roughness can be sometimes stationary
or non-stationary, depending upon the used roughness index. For instance, a random noise
roughness is stationary in terms of central-moment indices like standard deviation, skewness or
kurtosis, while in terms of peak to valley height it may not be.

Roughness stationarity also depends on both estimating unit and presence of trend or any
other systematic in the data. The later can be incorporated in index definition, thus some
indices are more robust in identifying stationarity than others. The estimating unit, on the
other hand, is a parameter in index estimation, and its change leads to different index values.
If there is an estimating unit for a roughness index that provides always the same index value,
then this estimating unit and index value are intrinsic properties of that roughness. The size of
such estimation unit is the characteristic scale of this roughness pattern. Take, for instance, a
sine function and the peak to valley height index. The index values will always be different for
estimating units less than a period of sine wave, while only for one equal to the period, all the
index values will be the same and correspond to the amplitude of that sine wave. Thus, this
estimating unit (the period) and this index value (the magnitude) are the intrinsic properties of
the observed wave. In addition, the period is the characteristic scale of the roughness pattern
given by the sine wave.

Heterogeneous roughness, introduced in the previous section, is an example of Non-stationary
roughness. For this type of roughness, index values alter all over the area, but its distribution
is not random. The values are rater systematically sub-clustered, indicating the presence of
separate roughness domains, i.e. subareas with different roughness pattern. Non-stationarity
may come from a process which interrupts the stationarity. An example for this is a pebble
orientation in steep slope streams. There, in the middle flow path, the particles are down-
stream oriented, whereas on the river banks, they are oriented randomly.

2.2.2 Isotropy

Within an area of isotropic roughness, the index value is independent on an analysis direction.
There is no special index targeting isotropy detection, but it is always possible to calculate indices
along several differently oriented profiles and use those information to describe the isotropy. In
praxis, the index values will never be the same and based on its dispersion, the roughness can
be considered either as isotropic or anisotropic. An example of anisotropic roughness are plowed
fields, where roughness significantly differ in directions along and perpendicular to the plowed
rows. Similarly to the stationarity, the isotropy depends on the length at which is estimated and
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the trend, but it also has an extra parameter - azimuth of the estimating direction. If there is a
direction that provides the same index value for all locations within the area, then this direction
and this index value are intrinsic properties of that roughness pattern. For a plowed field and
the peak to valley height index, it will be the azimuth of the line perpendicular to the plowed
rows and the ridge-furrow height, respectively. The estimating length and the trend follow the
discussion given for the stationarity, but now it is restricted only to a particular direction.

2.2.3 Scaliness

Scaliness is used to describe roughness which heights fluctuate over several magnitudes. This
range of roughness component is only analyzed within the characteristic scale of the roughness
pattern. Therefore, scaleness takes into consideration both estimation size/length and trend, i.e.
the common parameters for the two previous roughness dimensions. An example for scaliness is a
roughness of river beds. The scales in this pattern come from different particles (gravel, pebble,
bolder, etc.) that accumulate over the river bed in time. Also, different geomorphological
processes may create this type of roughness by interacting with surface over different scales.
(Ask BS for an example!). The opposite of scaliness is single-scale and scaleless roughness which
heights fluctuate over one or few magnitudes, respectively. An example of this roughness is
harrowed filed. The scales can be easily analyzed by magnitudes obtained form the Fourier
Transform of the roughness pattern.

2.3 Properties of roughness indices

The resolution of DRMs is the prime unit for roughness characterization. Within this spatial
unit, a roughness index should describe particular feature of a roughness pattern. Beside doing
this, roughens indices have other properties which may make them more suitable in specific
applications. These properties may also serve as a basis for index categorization. Here, the
index properties will be identified and described in more detail.

2.3.1 Geometrical meaning

Roughness indices use geometric information of a surface (x, y and z coordinates) to describe
surface roughness. As such, they always have a geometrical meaning which depends upon the
way how the information is explored. Some indices employ statistics to describe roughness.
These indices have gained large popularity over many disciplines, mainly because of their calcu-
lation simplicity and a common perception that roughness is natively related to height variation
(Linden and Van Doren 1986). Some of the most popular indices from this group are root mean
square height (RMSh), standard deviation (Std), average slope and skewness. However, the
statistical indices are highly influenced by factors like assumed distribution function, sampling
interval and evaluation length, which may be a drawback in some applications (Linden and
Van Doren 1986).

Another group of indices is feature oriented. They not only use roughness features like
local minima/maxima, but also may use geometric features to describe roughness. A typical
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Figure 1: Stationarity, Isotropy and scaliness - the 3D Roughness concept

index of the later is openness which estimates the maximum possible cone constrained by local
topography. Examples for the former are indices like local peak height and peak to valley
distance/height. There is also a third group of indices that combines both statistics and features.
Indices from this group are average peak height or peak frequency.

2.3.2 Physical meaning

It is very important for a roughness index to have a physical meaning, i.e. to be related with
surface features important for a physical process. This may ensure index popularity and wide
usage in a particular field. Physical meaning of an index is strictly related to a physical process,
and the index may either have it or not. In the river-bed roughness, for example, the skewness
with positive values indicates the aggregation of fine-particle materials over the coarse-particle
river bed (Smart et al. (2004) and Nikora et al. (1998)).

8



2.3.3 Geometry type

This index property depends on the type of the geometric information included in the index
definition. Indices can be categorized in three groups by this property. First group uses only
planar information (x and y coordinates). An example is the peak to valley distance index.
Second group uses only surface heights, i.e. the z coordinate. Standard deviation and RMSh
belong to that group. Finally, third group combines planar and vertical information, and typical
indexes of that group are average slope, openness and tortuousity.

2.3.4 Trend awareness

Roughness indices either include information about trend into their definitions or not. In the
later case, i.e. when the trend is not included, the index values differ from each other when they
are calculated before and after detrending of the data. This, for example, may affect stationarity
analysis, where presence of trend may significantly hamper its detection. Therefore, indices that
include trend, e.g. standard deviation or tortuousity, are more robust in stationarity detection
than indices like RMSh or peak-to-valley height which neglect the trend.

2.3.5 Frequency information

Using the Fourier Transform, roughness can be also represented in frequency domain by the
magnitudes and phases of the trigonometric basis. These frequency coefficients carry different
type of roughness information and therefore it is important to know which part of the frequency
is present in particular index. For example, the autocorrelation function includes only the
magnitudes into its definition which in some applications like backscatter modeling is not enough
to uniquely describe roughness (cite our previous paper!). Since there are two types of frequency
information, i.e. magnitudes and phases, roughness indices may contain either just one of these
two or both.

2.3.6 Estimation complexity

Each roughness state has a characteristic value of a roughness index, i.e. the theoretical value.
However, this number is not a priory known and has to be estimated. The estimation de-
pends on several factors, which makes the procedure more complicated for some indices than
for the others. The factors may come from selected measurement technique, measurement con-
ditions or the estimation procedure itself. The correlation length, for example, requires much
stronger measurement conditions and estimating procedure than the RMSh (cite papers from
the backscatter modeling!!!). In these studies, the correlation length is found to be highly sen-
sitive on factors like size of the measuring area, sampling interval and number of measurements
which just partly define the mentioned measurement conditions. In addition, this index can not
be explicitly estimated from the surface heights because a theoretical autocorrelation function
has to be estimated first. All these make the correlation length highly difficult to estimate
comparing to other indices.
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2.3.7 Convergence

One of the most important factors in estimating the index value is size (length) of the estimating
area (profile), and therefore, it is treated independently here. Within a homogeneous roughness
state, index values should demonstrate convergent behavior while the size of the estimating
area is growing. This means that there should be a size after which the index value does not
change significantly any more. This size is also called evaluation length (Whitehouse (2003)),
and the smaller it is the better. For a particular roughness state, each roughness index has its
own evaluation length, which determines their suitability for roughness analysis. (Taconet and
Ciarletti (2007) showed that) An estimation of a index at scales less than its evaluation size may
lead to its under- or over-estimation.

2.3.8 Derivation order

Sometimes, local statistics of an index may catch the roughness pattern fair better than the index
itself. The local variability of the openness index, for example, is found to be much more useful in
describing roughness of areas along a watercourse (cite our paper from MODSIM2011!!!) On the
other hand, indices may be combined with each other into new roughness measures. An example
for that is the effective slope index, defined as the ratio between the RMSh and the correlation
length, which is employed in the backscatter modeling to reduce the number of unknowns in
the models. Both types of roughness measures are derived from the original indices, either by
combining them or by exploring its statistical properties, and therefore, will be treated as index
derivatives.

3 Roughness index overview

Roughness features are highly diverse in the nature, which provides a large number of the indices
available for its caricaturisation. Here, the focus will be only on the most common roughness
indices. The overview balances between indices which gained certain popularity in a particular
field and indices that have prominent properties that was discussed in the previous section. For
each index, the overview includes its definition, main characteristics as well as links to other
indices. The focus will also be on roughness features and applications where the index can be
successfully applied.

3.1 Standard deviation (σ)

Standard deviation is a well accepted statistical measure for a surface roughness description.
It quantifies surface height variability towards to a predefined trend, and generally, it can be
defined as

σ =

√√√√ 1

N

N∑

i=1

(hi − T (hi))2 , (1)

where
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hi = h(xi, yi) . . . a surface height
T (hi) . . . a predefined trend
N . . . number of measurements

In the classical case the predefined trend is equal to the average value of surface heights. A
regression plane can be also used as a trend description and in this case Eq.(1) calculates the
RMSh of surface residuals. With this trend the slope effects in surface heights will be also
canceled out.

Darboux et al. (2002) uses the standard deviation of heights, estimated on profiles with the
length equal to the correlation length, to characterize soil roughness during a runoff process.
They detect a linear dependence between the standard deviation and the storage capacity of
the topography. The standard deviation is also used to express river bed roughness, treating
it as a random field of elevations in contrast to a traditional approach which is focused on a
particle size characterization (Smart et al. 2004, Nikora et al. 1998, Kohoutek and Nitsche
2010). However, they also state that the index is not appropriate for steep mountain streams
due to large irregularities in bedforms, present slopes and wide grain size distribution. So, an
interrupted stationarity of the surface geometry is hard to explain by this index. Finally, Hollaus
et al. (2011) estimated the relation between surface roughness and the width of a backscattered
airborne laser saning (ALS) pulse. They used the standard deviation of plane fitting residuals
to quantify surface roughness.

3.2 Root mean square height (RMSh)

This index is very similar to the standard deviation and they both are popular statistical mea-
sures. The main difference is that the standard deviation treats the trend of data as a horizontal
line fitted through surface heights while the RMSh dose not take the trend of data into con-
sideration. This actually means that the RMSh estimates an absolute magnitude of height
variation and the standard deviation can be seen as a relative measure of it, independent on a
height level of variation. As we state in the previous subsection, the RMSh is a special case
of the standard deviation with the specific detrending (horizontal plane z = 0 is taken as a
trend). Therefore, similar surface features can be characterized by using either the RMSh or
the standard deviation. The formula for calculating the RMSh is given as:

RMSh =

√√√√ 1

N

N∑

i=1

h2i , (2)

It can be shown that the RMSh index is a parametrization of the autocorrelation function,
when the lag value is set to zero, i.e. ACF (l = 0). In Section 3.4 this will be expressed by an
equation.

The RMSh of surface residuals is highly used as a surface roughness descriptor in modeling
radar backscattering signals (Verhoest et al. 2008, Lievens et al. 2009, Bryant et al. 2007,
Perez-Gutierrez et al. 2007, Davidson et al. 2000). Detrending of original surface heights is the
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first step in estimating roughness for this application. However, it is assumed that a part of the
trend remains in data and the RMSh is seen here as an appropriate index to quantify it.

3.3 Skewness (Sk)

Skewness is a measure which describes a degree of asymmetry from the normal distribution of
surface heights. The index can be calculated by:

Sk =
1
N

∑N
1 (hi − h)3

( 1
N

∑N
1 (hi − h)2)3/2

, (3)

This parameter is using very often in a combination with the standard deviation or other indices
that assume the normal distribution of surface heights. Smart et al. (2004) and Nikora et al.
(1998) reported a positive skewness for river bed elevations. They relate it with fine scale
sediment transport which causes a reduction of deviation in elevations below the mean bed
level. Additionally, it is noted that the detected skewness is in contrast with the skewness of a
grain-size distribution.

3.4 Autocorrelation function (ACF )

This function is highly related to the spatial statistic measure called Variogram γ(li), where l
represents a horizontal lag value. Both functions carry the same information about a surface
but differently expressed. Variograms quantize variation, while the ACF estimates a degree of
similarity for surface heights. It is irrelevant which one is used and discussion below, is valid for
both functions. Formulas for calculating the ACF and the variogram at a lag value lj are:

ACF (lj) =
1

N

N−1∑

i=0

z(xi)z(xi + lj) (4a)

γ(lj) =
1

2

1

N

N−1∑

i=0

(z(xi)− z(xi + lj))
2 (4b)

As we can see, absolute heights are involved in both definitions and therefore, the slope effects
should be removed before any calculation.

Next equations offer a relation between the mentioned functions and additionally with the
RMSh index.

γ(lj) = ACF (0)−ACF (lj) = (RMSh)2 −ACF (lj) , lj = j ∗∆l (5a)

ACF (0) =
1

N

N−1∑

i=0

z(xi)z(xi) = (RMSh)2 (5b)

where j (j = 0, 1, 2, . . .) controls the total number of estimated lags, while ∆l represents a
horizontal increment.
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Darboux et al. (2002) use the variogram to estimate changes at different scales in soil
roughness during a rainfall event. Due tu a rainfall simulation a starting surface structure was
modified in a heterogeneous way, changing also conditions for a runoff generation. However, those
new features in the surface were not possible to be detected by the variogram analysis performed
in their experiment. Taconet and Ciarletti (2007) quantified row periodicity of a ploughed soil
by using a directional ACF . The function is also highly used to describe general target geometry
which appears as one of the key parameters in the interpretation of backscattered radar signals
(Verhoest et al. 2008, Lievens et al. 2009, Bryant et al. 2007, Davidson et al. 2000). Finally,
Nikora et al. (1998) applied a so called structure function D(∆x,∆y) to quantize the isotropy
of river bed roughness. The last parameter is equivalent to the variogram function.

3.5 Correlation length (lcor)

This index is a parametrization of the ACF and represents a distance for which the ACF falls
below 1/e of its zero lag value (Taconet and Ciarletti 2007):

ACF (lcor) = ACF (0) · (1/e) = (RMSh)2 · (1/e) =⇒ lcor . (6)

From the last equation we can conclude that the RMSh and the correlation length can not
be treated as independent variables. However, the equation also converts vertical roughness
information (the RMSh) to a horizontal one (the correlation length) which is recognized as an
interesting surface feature in many applications.

Kohoutek and Nitsche (2010) and Smart et al. (2004) are used this index for a stream
bed morphology characterization. It was noticed from Smart et al. (2004) that the directional
(transferal and longitudinal) correlation lengths was not able to detect subtle river bad differ-
ences along the stream-wise and cross-flow directions. Nikora et al. (1998) tried to relate a
so called linear scale value to a bed particle axial size but they find no significant correlation
between them. However, they suggest using the index for quantifying a horizontal length of river
bed roughness. The linear scale index is a parametrization of the mentioned structure function
and can be seen as an equivalent to the correlation length. Correlation length is especially
popular in the soil roughness characterization for modeling of backscattered radar signals. All
the studies about this application, listed in Section 3.4 , take into consideration the correlation
length, as well. Evaluation length, number of evaluation sites, detrending procedure, horizontal
and vertical accuracy and sampling frequency are recognized as factors influencing an estimation
of the index. This topic has been treated intensively in Lievens et al. (2009), Verhoest et al.
(2008), Taconet and Ciarletti (2007) and Bryant et al. (2007).

3.6 Tortuousity (TB)

This index is firstly introduced by Boiffin (1984), and represents a ratio between the real length
of a profile (L) and the length of a straight line parallel to the average slope of the profile (L0):

TB =
L

L0
, (7)
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At the beginning a chain method was used for its measurement, while nowadays, the index can
be easily extracted from surface heights collected by any instrument. Consequently, the given
definition is later extended in order to take into consideration three-dimensional data (Hobson
1972, Helming et al. 1993). This index is considered now as a ratio between the real surface
area (A) and the area of a plane parallel to the average slope (A0). It should be noted that the
given definitions cancels the slope effect. However, the index strongly depends on a sampling
frequency and therefore it is not appropriate for a comparison between roughnesses of different
magnitudes (Kamphorst et al. 2000).

Taconet and Ciarletti (2007) demonstrate that the index is able to detect soil roughness
changes due to a simulated rainfall event. Additionally, they noted that different rates of rough-
ness degradation over ridges and “interrows” areas can be well distinguished by this index,
too.

3.7 Peak to valley height (PV h)

This index is used in surface metrology where surface roughness is considered as irregularities
coming from a manufacturing process (Whitehouse 2003). A Peak to valley height is a feature
oriented index but it can also be seen as a statistical measure which takes the two most extreme
heights of a surface. This index can be calculated by the next formula:

PV h = hmax − hmin , (8)

where the hmax and the hmin are the maximum and the minimum height of estimated surface,
respectively. Any slope effects should be removed from surface heights before calculation of the
index.

There are also several other feature oriented indices like peak to valley horizontal distance
(PV d), average peak to valley height, average peaks/valleys height, peak frequency, etc. How-
ever, those indices will not be specially analyzed here.
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4 Data

Six facade samples shaped by different techniques and particle sizes are analyzed in this report.
Each of them has a distinctive roughness pattern which was scanned and represented by a
corresponding point cloud. We will firstly describe the instrument which is used for the data
acquisition. Then we will describe processing steps which are done in order to create DSMs and
finally we will discus interesting roughness features present in the facade DSMs.

4.1 Measurement device

The METRIS MCA 3600 M7 (Manual Coordinate measuring Arm) is used for data acquisition.
This is a precise geometrical measuring system specified for 3D coordinates collection from a
relatively small objects (up to 2 m). The instrument can operate in three different acquisition
modes: hard probe, continuous scanning and laser scanning. The last one allows fast object
scanning with a triangulation laser scanner mounted on the head of the arm, which was suitable
in our case. Any movement of the head is recorded in the arm relative coordinate system
resulting to locally referenced scans of the object. The final product of this instrument is a
point cloud of the observed object.

Triangulation laser scanners (TLS) are actually active 3D scanners which combine laser and
digital camera senors to reconstruct the distance between a object point and the sensor. The
TLS mounted on the arm emits a set of oriented laser rays in the visible domain (red, 640 nm),
forming a stripe pattern of laser light over the estimated object. The emitted laser rays are placed
in a plane and the stripe pattern on the object represents the intersection of those two bodies.
Accordingly, the digital camera capture the pattern allowing the reconstruction of directions
from reflected rays. Subsequently, known distance between the laser emitter and the digital
camera as well as known direction of the emitted ray together with reconstructed direction of
the reflected ray allow to calculate a distance between the sensor and the illuminated stripe
segment. Finally, moving the TLS fixed on the arm head it is possible to collect a strip of 3D
points over the object.

The explained design is a main reason that a TLS has a characteristic spatial patten of
the acquired data. Figure 2 shows this pattern where several horizontally oriented strips are
measured over a sub-area of the facade sample M3. There are several pattern features which
can be observed in this point cloud. Firstly, the sampling frequencies along and across strip
are highly different in the value as well as in the structure. Then, the overlapping areas usually
appear with irregular shapes and sizes (feature (iv)). Finally, some repeated scans can be present
in data which will interrupt the existing sampling frequency (feature (iii)).

Across strip sampling frequency is more homogeneous and is controlled by a resolution of
the digital camera sensor and selected operational strip width (feature (ii)). We decide to use
the full sampling potential of the instrument during the data acquisition and restrict the strip
width to 50 mm. Additionally, the resolution of the digital camera is 1000 points per each stripe
leading to the across sampling frequency of 0.05 mm/stripe.

On the other hand, the along strip sampling frequency is constrained by the way of the TLS
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Figure 2: Spatial pattern of the point cloud acquired by the triangulation laser scanner mounted
on the arm
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movements over the object. This is done by operator hand movement and as a consequence
there are some areas where concentration of stripes is much higher than in other parts (feature
(i)). Due to this heterogeneity it was not possible to estimate the exact along strip sampling
frequency, however we observed that neighboring stripes are approximately spaced with 0.5 mm.

The explained sampling pattern is highly complex and is very different for all six data sets.
In order to avoid any influence of this effect during the index calculation process we decide to
create grid digital surface models (DSM) from our original data sets. Those grid DSMs are then
used for the visual interpretation and the index calculation.

4.2 Preprocessing

In this subsection we will explain how several series of facade DSMs are created. Those DSMs
series are the consequence of performing several processing operations on the starting data sets
and should offer a base for discussing index sensitivity to those operations. In order to calculate
those DSMs series, the original data are first cut to a sub-area and then different DSMs are
calculated.

Sub-area extraction: Each facade sample was scanned by the measurement arm and
six point clouds where collected. Due to the high sampling frequency of the arm the point
clouds where with a large number of surface points (>10 M). Therefore, we decide to restrict
our calculations to an appropriate sub-area. For all six point clouds, those sub-areas where
defined as rectangles of the equal sizes, with larger and smaller sides of 181 mm and 114 mm,
respectively. The following processing steps are done based on those point clouds.

DSMs generation: Although the sub-areas where of the same size and shape, due to the
different sampling patterns the number of points in them was very different, ranging from 550 K
to 950 K points. Therefore, the first step in the DSM generation was deducted to remove the
heterogeneity in the point distribution. The point clouds corresponding to the six sub-areas
are resampled to 0.1 mm regular grids using the moving plane interpolation based on sixteen
neighboring points per each grid location. On this way, six 0.1mm grid DSMs are created
representing the facade surfaces (see Figure 4).

The next processing step was introduced in order to create DSMs which will be free of trend.
This is done by fitting the orthogonal regression plane through all 0.1 mm grid DSM points and
taking the residuals as new heights. Consequently, six 0.1mm detrended grid DSMs are
created for our facade surfaces.

Besides detrending procedure, the 0.1 mm grid DSMs are also resampled to 0.5mm grid
DSMs using the nearest neighboring method. Then, those new DSMs are detrended, again using
the orthogonal regression plane residuals. The resulting layers, obtained after two mentioned
operations, represent 0.5mm detrended grid DSMs for the six facade surfaces.

We also were interested to estimate effects of smoothing operator to index values. This was
a reason to additionally perform the mean filter with a 7× 7 kernel on the 0.5 mm grid DSMs.
The resulting smoothed DSMs are then detrended on the same way like in the two previous
cases. Finally, six 0.5mm smoothed and detrended grid DSMs are calculated for the
facade samples.
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Figure 3: Implemented workflow for the facade DSMs calculation. For each facade point cloud
this workflow is performed independently

As it can be seen, several different DSMs series are calculated after performing the explained
procedure. However, only four datasets are selected for the index analysis. We will list here
those DSMs series and give labels which are used for them:

1. the 0.1 mm grid DSMs → [01 + T ]

2. the 0.1 mm detrended grid DSMs → [01]

3. the 0.5 mm detrended grid DSMs → [05]
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Figure 4: Digital surface models of the facade samples

4. the 0.5 mm smoothed and detrended grid DSMs → [05 + S]

4.3 Description

Before a roughness index assessment it is very important to describe different roughness in our
test data set. This can be done only if the understanding of the roughness in the facade samples
exist. Therefore, for the purpose of this study, we will assume that the roughness of the facade
samples is related to the surface complexity. Additionally, we will assume that this complexity
is demonstrated by different magnitudes and frequencies of surface height fluctuation. This
means that for sinusoidal surfaces of the same frequency, those with higher amplitudes will be
assumed as rougher while, for surfaces of the same amplitude, those with higher frequencies
would be rougher. Finally, for surfaces with irregular and regular frequencies, the first ones
will be assumed as rougher surfaces. This understanding of roughness is in coordination with
Hoffman and Krotkov (1989).

Figure 4 provides an overview for the six DSMs of the facade samples. Roughness presented
by those surfaces will be described and ranked with respect to the given understanding. Positions
of the given DSMs in the figure are in coordination with decreasing roughness, ranging from left
to right in first and second row. DSMs in the first row are with higher magnitudes and lower
frequencies of the height fluctuations comparing to ones in the second row. For both rows the
degrees of frequency irregularities are ranging from left (high) to right (low).

Facade sample M5: It is one with the lowest amplitude and the highest frequency of height
fluctuation among the observed DSMs. They frequency irregularities are very small which, in
general, makes that this facade sample is considered as one with the lowest roughness. Surface
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heights are here concentrated around the maximum value and the magnitude deviation seams
to be moderate, behaving as holes in an upper layer.

Facade sample M3: For this DSM the hight fluctuation appears with a slightly lower
frequency and one order higher magnitude deviation than for the facade M5. On the other side,
there is almost no frequency irregularities and the magnitude itself is similar to the previous
facade. Finally, surface heights are mainly concentrated around the minimum value, behaving
as small hills over a flat topography.

Facade sample M4: Frequency of the height fluctuation as well as the concentration of the
heights for this sample are very similar to the facade M5. However, serious interruptions in the
frequency can be observed making this facade sample with higher roughness than the facades
M5 and M3. Those frequency irregularities cause that the magnitude deviation appears in two
separate scales: a moderate (similar with one in the facade M5) and a higher order one which
is even higher than deviation in the facade M3. Additionally, moderate magnitude deviations
dominate over the scene while the second ones appear just in small sub-areas.

Facade sample M6: This facade sample is very similar to the facade M3, i.e. the frequency
of height fluctuation and its irregularities are more or less similar for both. However, the mag-
nitude in this sample is much higher than for all previous samples. In addition, the magnitude
dispersion is very high and acts over a single scale. Therefor, this facade sample is considered
to have the third biggest roughness among the DSMs.

Facade sample M2: This facade sample represents a very complex surface where the
magnitude dispersion performs over three different scales. Due tu this complexity, it is very
hard to recognize presence of any frequency in the height fluctuation. The DSM looks like
a combination of irregularly shaped hills over a flat topography where the high magnitude
dispersion dominate. Because of those irregularities and the very high magnitude, the facade
M2 is assumed to have the roughness bigger than the facade M6.

Facade sample M1: Characteristics which are noted for the facade M2 are also valid for
this one. The only difference is that the height fluctuation for the facade M1 are additionally
systematically oriented, following an arc movement from the upper left corner to the right side
of the DSM. This systematic makes the roughness assessment more complex, and therefore, this
facade is assumed to have the highest roughness.

5 Results

The results are organized in two subsections. The first subsection is focused on the calculated
index values, whilst the second subsection demonstrates the index change over several scales. In
both subsections the calculated results for a facade can be based on four different dataset types.
Those datasets correspond to the DSMs explained in Section 4.2:

1. the 0.1 mm DSM [01+T],

2. the 0.1 mm detrended DSM [01],

3. the 0.5 mm detrended DSM [05] and
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4. the 0.5 mm detrended and smoothed DSM [05+S].

5.1 Indices

The results in this subsection are further divided in several subsections that treat each index
independently. The present index values are mainly organized in tables and figures. They should
answer how is an index sensitive to different processing operators (detrending, smoothing, etc.)
and should offer a base for a facade roughness ranking.

There can be three different types of information present in the tables. The first type is
the index values which are listed in separate rows. Each row corresponds to a separate facade
sample. The second type is additional columns that are mainly derived from the first type, i.e
the index values. The last type of information is statistics calculated for the previous two types.

5.1.1 RMSh and Std

Table 2 summarizes the root mean square height (RMSh) and the standard deviation (Std)
values for all six facade samples. Three extra columns are also given, where two of them are
named ’Std diff’ and one is named ’Nor (Std diff)’. First ’Std diff’ represents the difference in
the Std of the DSMs with and without trend. Those information should quantify the amount
of linear trend present in the starting data sets. Second ’Std diff’ is the difference in the Std of
the smoothed and non-smoothed DSMs. Sensitivity of the Std index to the smoothing operator
should be estimated by those values. The ’Nor (Std diff)’ however, takes the starting power of
a signal into account and therefore, estimates the sensitivity to the smoothing more objectively.

Facade RMSh Std Std Std diff Std Std Std diff Nor (Std diff)

sample [01+T] [01+T] [01] [01+T]-[01] [05] [05+S] [05]-[05+S] [05]−[05+S]
[05]

M1 99,981 0,381 0,367 0,014 0,366 0,283 0.083 0.227
M2 99,902 0,331 0,299 0,032 0,299 0,213 0.086 0.288
M3 99,682 0,242 0,217 0,025 0,217 0,172 0.045 0.207
M4 99,782 0,263 0,250 0,013 0,250 0,181 0.069 0.276
M5 99,982 0,162 0,151 0,011 0,152 0,105 0.047 0.309
M6 99,843 0,390 0,370 0,020 0,370 0,292 0.078 0.211

Table 2: RMSh and Std overall statistics

In coordination with calculated values we can say that the RMSh values are significantly
higher than the Std ones for the datasets where trend is not removed. On the other hand, values
for both indices are equal for all detrended data sets.

With respect to the Std values for data with and without a trend, there can be seen a clear
reduction of the index for all facade samples. This just prove the assumption from the beginning
of this section that the detrending has direct influence on the Std index. However, values in
the first ’Std diff’ show that absolute linear trends are very low for all the six facade samples.
Besides, we can say that facade M2 has the biggest, while facade M5 has the lowest linear trend.
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Table 2 also illustrates that grid size dose not influence almost nothing either to the Std
or the RMSh index, while both are highly dependent on the smoothing. Facades M2 and M5
show the highest and the lowest Std reduction due to the smoothing, respectively. Still, it is
interesting that the facade M5 at the same time demonstrate the highest relative reduction of
the Std (Table 2, column ’Nor (Std diff)’).

5.1.2 Peak to Vally height (PV h)

A table, similar to previous one, is prepared for this index. There are three different types of
information in this table. First are PVh values calculated based on the four facade data sets.
Second are the data in the last three columns, representing the difference in PVh values. Those
data are calculated in order to estimate the index sensitivity to the detrending, resampling
and smoothing operators, respectively. Third are the values placed in the last row. The first
four numbers in that row represent standard deviation of the PVh values corresponding to a
specific DSM data set. The other three numbers show average of absolute ’PVh diff’ for the
corresponding column.

Facade PVh PVh PVh PVh PVh diff PVh diff PVh diff
sample [01+T] [01] [05] [05+ S] [01+T]-[01] [01]-[05] [05]-[05+S]

M1 2,851 2,742 2,531 1,934 0,109 0,211 0,597
M2 2,239 2,411 2,378 1,773 -0,172 0,033 0,605
M3 2,101 2,243 2,126 1,418 -0,142 0,117 0,708
M4 2,157 2,044 2,001 1,664 0,113 0,043 0,337
M5 1,955 1,89 1,847 1,012 0,065 0,043 0,835
M6 3,277 3,029 3,011 2,213 0,248 0,018 0,798

0.518 0.430 0.422 0.418 0.142 0.078 0.647

Table 3: PVh overall statistics

Table 3 shows that the facade M6 has the highest while the facade M5 has the lowest PVh
values over all the DSM data sets. Other two facades M1 and M2 also keep their absolute
ranking over the data sets while this is not a case for the facades M3 and M4. Furthermore, the
facades M3 and M4 are with lower PVh values compared with the facades M1 and M2.

The dispersions of the PVh values decrease permanently, moving from the trend DSM to
the smoothed DSM data set; in fact, the biggest drop appears after the detrending while for
other operators the decreasing is rather moderate. On the other hand, the transition of the
PVh values over the datasets is not straightforward. This is especially because the detrending
provides an increase of the PVh value for some facades, i.e. M2 and M3 (see first ’PVh diff’
column). Two other operators however, demonstrate the decreasing of the PVh value for all the
facades, where the smoothing operator makes a considerable change of the index.
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5.1.3 3D distance between peak and valley points (PV d3D)

Information carried by this index complement the PV h values since they explain how far apart
the extreme points from each other are. We again prepare the table with the index values
calculated based on the four data sets (Table 4). The change of the index value, over the
operators, is present there and allows to determine if the extreme points remains the same
during the data processing.

Facade PV d3D PV d3D PV d3D PV d3D
sample [01+T] [01] [05] [05+ S]

M1 83,045 83,042 47,827 105,166
M2 115,515 91,397 90,553 91,315
M3 46,348 199,601 198,924 109,227
M4 65,753 72,464 65,462 111,508
M5 68,357 108,701 108,432 118,471
M6 134,438 94,624 94,442 112,099

Table 4: PV d3D overall statistics

All the PV d3D values in the Table 4 are different which means that there is no one pair of
the extreme points which remains the same during the data processing.

5.1.4 Skewness Sk

The values of this index are summarized in Table 5. The last two columns there, emphasize the
difference in the Sk with respect to the detrending and smoothing operators, respectively. The
a1 and b2 values given in last row, represents statistics from the corresponding columns.

Facade Sk Sk Sk Sk Sk diff Sk diff
sample [01+T] [01] [05] [05+ S] [01+T] -[01] [05]-[05+S]

M1 0,97 0,767 0,767 0,895 0,203 -0,128
M2 0,666 0,359 0,36 0,485 0,307 -0,125
M3 0,076 0,267 0,267 0,375 -0,191 -0,108
M4 -0,869 -0,918 -0,917 -1,275 0,049 0,358
M5 -0,055 -0,053 -0,059 0,307 -0,002 -0,366
M6 0,249 -0,016 -0,015 0,013 0,265 -0,028

a 0,637 0,567 0,567 0,747 b 0,1695 0,1855

Table 5: Sk overall statistics

1a =
√

1
6

∑M6
i=M1(Sk(i)− S̄k)2

2b = 1
6

∑M6
i=M1 |Sk(i)|
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Presented results show that the skewness is very sensitive to the detrending and smoothing
operators, while the resampling, on the other hand, hardly provide any change in the index. It
should be stressed that the smoothing operator makes extreme deformation of the Sk values for
all the facade samples, expect the M6 which data remain non-skewed.

There are four possible patterns of the index change after performing the detrending operator:
1. from a non-skewed to a skewed data

2. from a skewed to a non-skewed data

3. data remain skewed

4. data remain non-skewed
All of those cases are demonstrated by some of the facades in Table 5. The facade M3 is example
for the first case while the facades M6, M1 and M5 correspond to other three, respectively.

5.1.5 Autocorrelation function ACF and correlation length

The geostatistical analysis of the facade samples is done based on the calculated global and
directional ACFs. We will first present results of the global ACF estimation and then briefly
discuss the directional ACF.

The global normalized ACFs are calculated from the corresponding global variograms which
where estimated in the software VESPER (Whelan et al. 2002). The formula proposed in Blaes
and Defourny (2008) is used for this conversion:

ÃCF (li) = 1− γ̃(li)

γ̃(∞)
, (9)

where

li . . . a horizontal distance, i.e. lag value
γ̃ . . . fitted variogram

ÃCF . . . corresponding ACF fit
γ̃(∞) . . . the value of the fitted variogram for an infinite distance

We decide to estimate the global variogram under the range of 60mm which corresponds
approximately to the half of the smaller side of our estimated area. One group of facade samples
(M1, M2 and M4) reached the maximum variation and converge under this range, while the other
three samples (M3, M5 and M6) did not. Therefore, the facades are interpreted in two ways:
the fist group by the fitted variograms and the calculated correlation lengths, while a multi-scale
variogram analysis is done for the second group.

Figure 5 shows the calculated correlation length for the facades which variograms reached the
maximum variation. The Generalised Cauchy 3 models (VESPER 1.6 2006) are fitted through

3 γ(li) = (C0 + C1(1− rho) , rho = (1 + (li/A1)2)α , (α > 0)
li . . . a horizontal distance
γ . . . fitted variogram
C0, C1, A1, α . . . the model coefficients which are calculated in VESPER during the fitting
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all empirical variograms estimated in this group. Several other models are tried too, but the
Cauchy models where the ones with the smallest errors.

It can be seen in the figure that the detrending makes the data less correlated, while the
smoothing operator behaves opposite to this. Furthermore, each facade within this group has
different sensitivity on the smoothing operator. Facades M1 and M4 are with similar correlation
length values while facade M2 has the smallest one in this group.

Figure 5: Calculated global correlation length values l [mm] for the first group of the facades.

Figure 6 displays three global variograms calculated for the facade M3, that belong to the
second facade group. The variograms are different in the maximum lag length which was set at
6, 60 and 180 mm for variograms 6(a), 6(b) and 6(c), respectively. This setting offered a base
for a multi-scale analysis.

The variograms from the facade M3 have several general characteristics. First, the var-
iograms 6(b) and 6(c) demonstrate several different rates of the data variation over several
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(a) max lag 6mm (b) max lag 60mm (c) max lag 180mm

Figure 6: Three variograms of the facade sample M3 calculated based on the [01+T] data set.

horizontal scales. This makes estimation of the global theoretical variogram and the corre-
sponding correlation length very difficult. Second, there is a crucial lag at whom the general
trend of data variation is changing. This value is marked with the red dotted vertical line in
Figure 6(c). Third, for the data separated up to 60 mm there can be recognised three zones
which corresponds to different speeds in data variation. The red dotted vertical lines in Figure
6(b) delineate those zones. Finally, the data shows a local convergence under 6 mm distance
which can be seen on the variogram 6(a).

Figure 7 is prepared to aid understanding how the different processing operators affect on
the variogram. We can see there that the global data variation is reducing as the detrending and
smoothing operators are successively performed. The detrending operator changes the shape of
the variogram (especially after lag of ∼ 18 mm), whereas the smoothing operator just slightly
smooths the variogram almost without changing its shape. Furthermore, it should be noted
that zone under lag of 18 mm remains unchanged after the detrending. The variogram from the
resampled and detrended data set ([05] DSM) is omitted here because the resampling operator
did not significantly affect on it.

In order to compare the facades from the second group with each other we create their
global variograms under the maximum lag range (see Figure 8). They are calculated based on
the corresponding detrended 0.1 mm grid data sets. We decide to use this data set because its
variograms have the smallest ’pollution’ due to the processing and therefore, represent the best
estimation of the real variograms.

From the Figure 8 we can see that the facade M6 appears with a significantly higher variation
in heights comparing to the other two. In addition, the facade M6 shows two general zones of
the data variation: one with an increase and other with an occasionally interrupted decreasing
trend. Those two zones are separated at the lag value of 49 mm (see the vertical red dashed
line in Figure 8(c)). On the other hand, the facades M3 and M5 demonstrate only constant
increase in the variation and therefore, we can say that the last two did not reach their variation
maximums under 180 mm. Nevertheless, there is a local zone in the facade M3 variogram that
interrupts the general increase.
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(a) 01+T data set (b) 01 data set (c) 05+S data set

Figure 7: Three variograms of the facade sample M3 calculated based on the three differently
processed data sets.

(a) Facade M3 (b) Facade M5 (c) Facade M6

Figure 8: The variograms of the facades from the second group calculated based on the detrended
data sets.

Let us now go back at the smoothing operator and analyse it in more details. The graphs
in Figure 9 represent the variogram difference of the [05] and [05+S] data sets, calculated for
each facade independently. With respect to the variogram definition (Eq.4b) this means that
the graphs also are the variograms of the residuals between the [05] and [05+S] surfaces, i.e.
the original and smoothed surface. The figures show that for the lags under 2 mm smoothing
is extremely low, whilst on the other hand, the smoothing differ over the lags higher that this
value. In addition, the residuals for all the three facades are uncorrelated which means that the
smoothing operator did not filtered out the trend from the data.

In order to estimate the amount of the performed smoothing we decided to use the mean
values from the variograms of the residuals (the horizontal dashed blue line in Figures 9(a),9(b)
and 9(c)). It can be seen that the facade M6 is the most sensitive on the smoothing; approxi-
mately 4.5 and 3 time more than the facades M5 and M3, respectively (please, note that the
axes offsets of Figure 9(c) are different from the other two). This is very much in correlation
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(a) Facade M3 (b) Facade M5 (c) Facade M6

Figure 9: The variograms of the residuals between the original and smoothed facade surfaces.

with the absolute facade variance present in the original variograms (Figure 8). Therefore, it
can be said that surface degradation due to the smoothing depends strongly on the starting
roughness conditions and dose not manifest uniformly over all the scales.

For the purpose of the multi-scale analysis we estimated the global variograms under the
range of 6 mm for the facades from the second group. This zone is characterized by the extremely

(a) Facade M3 (b) Facade M5 (c) Facade M6

Figure 10: The ACFs of the facades samples from the second group calculated based on the
detrended 0.1 mm grid data sets.

high speed of data variation and we decide to estimate it by the corresponding correlation lengths.
Therefore, the procedure explained at the beginning of this subsection was performed once more
and the corresponding correlation lengths where calculated. Three examples of the fitted ACFs
and the calculated correlation lengths are given in Figure 10. They are calculated based on the
detrended 0.1 mm grid data sets of the facades from the second group. Similarly as earlier, the
correlation length values are summarized in the Figure 11.

The data from Figure 11 confirm once more that the correlation length is highly sensitive to
the smoothing operator. However, the results did not show dependence on the detrending which
could be due to the very small maximum lag value (6 mm). For the resampling the results show
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Figure 11: Calculated global correlation length values l [mm] for the second group of the facades.
The asterisk symbol stays for the Stable function fitted as an ACF theoretical model. The
Cauchy models are fitted for all the other datasets.

little change which can be addressed to randomness of the resampling procedure.
It should be noted that the correlation length values in Figure 11 describe the surface under

6 mm scale and this is a reason why the facade M6 has the biggest correlation length. This
facade has a low frequency and a high amplitude height fluctuation which under the estimated
range appears as a predominantly smoothed surface. On the other hand, the height frequency
of the facade M5 is under this range and therefore, this surface is highly uncorrelated at this
scale.
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