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2 ABSTRACT 

In this SoA report different techniques for road extraction from Airborne Laserscanning data 
(ALS) are summarized and discussed. Furthermore, several examples of road extraction from 
point clouds as well as images are presented. 

The state of the art of these techniques shows that airborne laser scanning has a great potential 
in extracting forest roads, however there is a lack of robust and automatic methods in achieving 
this goal. The planarity of the road surface and the fact that roads are on ground level have been 
exploited by authors for forest roads detection. The fusion of intensity data along with plane 
fitting residuals have so far given the best results in forest road extraction. However intensity of 
ALS signal is strongly dependent on the properties of the surface and the flight mission. 
Generally it can be stated that there is a need for more robust measures to extract roads in 
varying terrain types.  
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3 INTRODUCTION 

Forest roads are essential for forest management and monitoring and provides vital passage for 
forest products, infrastructure and fire protection. Therefore it is imperative to develop tools 
which help to automatically detect forest roads.  Airborne laser scanning (ALS) has a great 
potential for forest road detection due to its ability to penetrate into dense vegetation. Unlike 
ALS, aerial and space borne imagery cannot see under dense canopy, as a result do not provide 
satisfactory results in such areas. On the other hand terrestrial laser scanning (TLS) and in situ 
measurement using tacheometers [1] can be expensive especially for large scale forest road 
detection. 

The process of road extraction can be seen as a segmentation process which groups the data into 
different categories based on some decision rules. As mentioned previously ALS is the most 
suitable data source for detection of forest roads. Therefore in context of forest road extraction it 
is essential to study the segmentation methods for point cloud data which can then be utilized 
for forest road detection. 

In section 2 we present a survey of segmentation methods which can potentially be utilized for 
extraction of forest roads from point cloud data. We do not restrict ourselves to methods and 
techniques which are presented in literature with reference and applications in forestry. This 
enables to cover a variety of segmentation techniques, most of which were originally not 
discussed in relation to forestry but in future might help in developing tools for forest 
monitoring. This may also help the reader in understanding the advantages of various 
segmentation techniques in a broader perspective and facilitate as a reference for further 
development of segmentation methods for forestry, especially the forest road extraction. In 
section 3, we present methods for road extraction using ALS data with focus on forest road 
extraction. Again the aim is to present a broader view on the point features used and the 
methods applied. Furthermore in section 4 we present a brief overview of image based road 
extraction methods to develop a correlation between the point cloud based and image based 
techniques for road extraction. 

4 SEGMENTATION 

Segmentation is the process of partitioning certain identities into segments, where elements of 
each segment share closely related characteristics. The formal definition of segmentation as 
given in Hoover et al. [2] is as follows: 

Let P represent the entire point cloud. The segmentation is a process of partitioning P in to sub 
groups  such that 

1.  
2.  (empty set) for all i and j,   

3.  is a connected in space 
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4. Predicate  = TRUE for i=1,2,..,n and 
5. Predicate  = FALSE for  neighboring  

In literature there exists a variety of point cloud segmentation algorithms with focus on different 
applications like segmentation of indoor [3] and industrial scenes [4-6], tree detection [7-9], 
shape extraction [10], segmentation of urban areas [11]. Most of these segmentation methods 
can be categorized into the following four types: 

1. Clustering  
2. Parametric Shapes 
3. Region Growing 
4. Graph Cut (Graph partitioning) 

 
In following sections a brief description of these segmentation methods is presented along 
with some examples of application of these methods for point cloud segmentation.   

 

4.1 CLUSTERING 

Clustering is the process of sub dividing data into similar clusters or groups where entities of 
each cluster shares similar properties. Clustering has been widely applied in data mining, 
machine learning and image analysis community. Conceptually clustering only involves grouping 
data into clusters based on some features. Therefore clustering may not satisfy spatial 
connectivity condition as mentioned above in the definition of segmentation. In context of point 
cloud segmentation, if position of the point is included in the feature space, clustering may result 
in segmentation. However if the position or the connectivity of points is not included in the 
clustering procedure then a point neighborhood condition is subsequently applied to obtain 
segmentation. A review of clustering algorithms can be found in [12]. 

The features commonly employed for point cloud clustering are based on the geometrical 
properties of points like position and normal vector and the radiometric properties like 
reflectance. A variety of clustering algorithms have been applied to point cloud data e.g. k-mean 
clustering [13], mean shift clustering [14], hierarchical clustering [15] and mode-seeking [16]. In 
the next section, some of these examples are discussed in detail in context of point cloud 
segmentation.     

 

4.1.1 K-MEAN CLUSTERING  

K-mean algorithm is a widely used data clustering algorithm. It divides data points in feature 
space into “K” clusters by minimizing the mean square distance between the data point and its 
center [13, 17, 18]. The initial cluster centers are often randomly selected and data points are 
assigned to clusters based on their distances to the cluster centers. The centroid of each cluster 
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is then recomputed using the points assigned to the cluster in the first step. The distance from 
each cluster center to data points is then recomputed and data points are assigned to a cluster 
whose center is the nearest. This process is applied iteratively until the cluster centers don’t 
change anymore.  

One disadvantage of k mean algorithm is that the number of clusters has to be specified in 
advance. Additionally the grouping into clusters depends on the initially selected cluster centers 
and the algorithm is sensitive to outliers.  

 

4.1.2 “CLUSTERING IN AIRBORNE LASER SCANNING RAW DATA FOR SEGMENTATION 
OF SINGLE TREES” 

Morsdorf et al. [9] perform k-mean clustering on raw point cloud data to obtain single trees. K 
mean clustering result is sensitive to the initial seed points which may result in unintended 
result. To obtain seed points, an nDSM based threshold value is applied to find seed points for 
individual trees. Additionally the pine trees crown size is quite smaller compared to the height 
distribution of points. Therefore z axis was scaled with an empirical derived factor. Individual 
trees segmented using region growing and k-mean clustering are shown in Fig. 1. It is mentioned 
that in locations where the trees are very close to each other the approach of local maxima in 
DSM underestimates the number of trees, as a result a single cluster was assigned to trees 
present very close to each other. 

 
Fig. 1 Left: Seed points computed automatically from local maxima of nDSM, Middle: Side view of 
raw 3D data, Right: Segmented trees 
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4.1.3 MEAN SHIFT ALGORITHM 

Mean shift algorithm, originally proposed by Fukunaga and Hostetler [14], is a non-parametric 
method, which can be used for clustering of data [14, 19, 20] . Unlike k-mean clustering mean 
shift algorithm doesn’t require any prior knowledge about the number of clusters. In mean shift 
algorithm each point in feature space is considered as a sample of the underlying probability 
density function, which can be estimated using data points in a neighborhood. This probability 
density function describes the probability of distribution for each cluster in the feature space. 
Each data point in the feature space is then shifted via gradient ascent of the estimated 
probability density kernel. This way each point is iteratively shifted towards the maxima of the 
local probability density kernel. The only free parameter in the mean shift algorithm is the 
kernel width also called bandwidth of the kernel density function. The kernel width of the 
probability density kernel is important parameter for determining correct number of clusters. A 
high value of kernel width might result in merging of individual clusters (over-smoothing), while 
a small value might cause too many clusters. Melzer [11] write that there exists theoretical 
results to find optimal value of kernel width but only for univariate case. 
 

4.1.4 “NON-PARAMETRIC SEGMENTATION OF ALS POINT CLOUDS USING MEAN 
SHIFT” 

Melzer [11] use mean shift procedure for segmentation of city areas. Mean shift algorithm is 
applied on an ALS dataset over an area of Vienna, Austria. Results from using two different set of 
features points have been presented. In the first case only the 3D location of the points have 
been used for segmentation, while in the second case, amplitude and the pulse width of the last 
echo have been used in addition to the 3D location of the point. Results shows that using 
additional attributes of amplitude and echo width provide finer segmentation, particularly more 
individual buildings are characterized as a separate segment. The streets, vegetation and the 
buildings are segmented correctly. The only problematic zones are the courtyards where the 
vegetation and buildings are too close to each other. The results of the segmentation are shown 
in Fig. 2. 

 

Fig. 2: Left: Aerial photograph of test area, Middle: Mean shift using only 3D point location, Right: 
Mean shift using additional attributes of amplitude and echo width 
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In addition to the segmentation of the urban areas, Melzer [11] present a method of extracting 
power lines: vegetation filtering using the mean shift procedure. If a DTM is available, terrain 
points can easily be removed using a height threshold.  Then mean shift procedure is applied to 
the 3D point which produces separate clusters for vegetation and the points on the power lines. 
The elongation ratio the clusters, turns out to be good measure in differentiating between the 
vegetation clusters and power lines clusters. The results of the clustering are shown in the Fig. 3. 

 

Fig. 3: Results of mean shift clustering for power lines extraction 

 

4.1.5 “SEGMENTATION OF AIRBORNE LASER SCANNING DATA USING A SLOPE 
ADAPTIVE NEIGHBORHOOD” 

Filin and Pfeifer [16] present a segmentation method which involves clustering using mode-
seeking approach [21]. They define a seven dimensional feature vector for each point. These 
features include position, parameters of a plane fitted to the neighborhood of a point and the 
relative height difference between the point and its neighbors. Instead of creating 7 dimensional 
feature space the authors separate positional information to create 4 dimensional feature space. 
This feature space is clustered using a mode-seeking algorithm [21] to identify the surface 
classes. After extracting surface classes, the points are grouped in object space utilizing spatial 
proximity measure. The Fig. 5 shows distinct clusters for saddle-back roofs and dormer. The 
points belonging to these individual clusters are then segmented using spatial proximity 
measure. 
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Fig. 4 Left: Point cloud of two saddle-back roofs and one dormer, Right: x and y component of 
normal vector for each point in feature space 

 

4.2 PARAMETRIC SHAPE EXTRACTION 

Extraction of parametric shapes like plane, cylinders and spheres from point cloud data has been 
a widely addressed topic.  Generally a prior knowledge of expected shapes in the data is 
available. Random Consensus Sampling (RANSAC) [14] and Hough transform [22] are the most 
commonly used methods for parametric shape extraction. Both these methods are robust to 
noise and can be used for both 2D and 3D data [10].   
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4.2.1 HOUGH TRANSFORM 

Hough transform is a method of finding shapes, lines and curves in a parameters space. It has 
been widely used in 2D images to find lines, circles and ellipses.  2D Hough transform has been 
extended to 3D for detecting cylinders [23], building modeling [24-26], roof detection [27], 
segmentation of industrial scenes [4]. 
A line in 2D can be represented by two parameters m (slope of the line) and c (the y intercept). 
Using this parameterization one can write the equation of line as: 

 
Therefore each line in xy plane can be represented as a point in (m,c) space (also known as the 
parameter space or Hough space). Therefore for each given point in object space we can assign 
m values between [0,π] and subsequently find the corresponding c values. These (m,c) pairs 
form a line in Hough space. By applying this procedure to data points we will have a set of lines 
in (m,c) space. These lines will intersect at a certain point in (m,c) space which represents the 
line present in the 2D object space. 
Similar to the 2D case Hough transform can be extended to detect 3D objects in point clouds. A 
plane in 3D space is represented as 
   

 
 
And we apply a similar procedure as described before to compute the parameters a,b,c in the 
parameter space.  
 

4.2.2  “RECOGNIZING STRUCTURE IN LASER SCANNER POINT CLOUDS”  

Vosselman et al. [4] discuss segmentation of point cloud using smoothness, iterative extraction 
of planar surfaces and parameterized shapes using Hough transform. The 3D Hough transform 
using normal vectors where Cylinders and spheres are detected in point clouds. This technique 
is then applied to for automatic segmentation of industrial scene, city landscapes, digital 
elevation models and trees.  

 
Fig. 5 Industrial scene, Left: Color coded points according to their surface normal direction, Right: 
Segmentation result 
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4.2.3 RANSAC 

RANdom SAmple Consensus (RANSAC) paradigm is used for model fitting of data. RANSAC has 
been used for finding primitive shapes in point cloud data [3, 10, 28], road parameters 
extraction [29], point cloud registration [30], building façade extraction [31], roof plane 
detection [27]. RANSAC can handle large amount of outliers [32]. RANSAC takes minimum 
number of points possible to initially estimate the model parameters and then enlarges this set 
by including points which are consistent with the model parameters. For example in order to fit 
a plane to a collection of points, RANSAC will take 3 points and estimate the parameters of the 
plane and calculate the number of points that are compatible to the fitted plane. The formal 
definition of the RANSAC paradigm as stated in [32] is as follows 

”Given a model that requires a minimum of n data points to instantiate its free parameters, and a 
set of data points P such that the number of points in P is greater than n [#(P)≥n], randomly 
select a subset SI of n data points from P and instantiate the model. Use the instantiated model 
M1 to determine the subset SI* of points in P that are within some error tolerance of Ml. The set 
SI* is called the consensus set of S1. 

If #(SI*) is greater than some threshold t, which is a function of the estimate of the number of 
gross errors in P, use SI* to compute (possibly using least squares) a new model MI *.If #(SI*) is 
less than t, randomly select a new subset $2 and repeat the above process. If, after some 
predetermined number of trials, no consensus set with t or more members has been found, 
either solve the model with the largest consensus set found, or terminate in failure”. 
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4.2.4 “EFFICIENT RANSAC FOR POINT CLOUD SHAPE DETECTION” 

When the number of primitive shapes classes is larger and the size of the point cloud is large as 
well, the computational cost of the shape extraction using RANSAC can become prohibitive. 
Schnabel et al. [10] propose a sampling strategy to increase the performance of the RANSAC. 
They extract planes, spheres, cylinders, cones and tori in the point cloud, which require between 
three to seven parameters. Schnabel et al. [10], use point normals along with the 3D point to 
reduce the minimal number of points required for estimating shape parameters. However they 
remark that using an additional point helps to eliminate shapes with low scores.   

They estimate a plane using 3 points and then check if the difference between the normal of the 
plane and the normal vectors of the three points are within a threshold. A sphere is estimated 
using two points and their normal vectors. The centre of the sphere is the computed using the 
mid point of the shortest line segment between the two lines consisting of points and their 
normal vectors and the radius is the estimated as the mean of the distance between the points 
and the center. Similarly the parameters for the cylinders, cone and tori are estimated using the 
information from the 3D points and their normal vectors 

The computational cost of the RANSAC mainly depends on two factors: the number of minimal 
sets drawn and the score evaluation for each shape. The sampling of the points is directly linked 
to the number of minimal sets which are drawn, therefore they introduce a sampling strategy 
based on octree to increase the performance of the algorithm. When choosing the candidate 
points the first sample is drawn without any restriction but the next sample points are chosen 
from a randomly drawn level of octree which contains the first points. This exploits the fact that 
the points close to each other have high probability that they belong to the same shape.  The 
computational cost for the score evaluation is reduced by dividing the point cloud into disjoint 
random subsets and evaluating the score functions for the subsets of points.   

 

 

Fig. 6: Left: Original Right: Approximation of the surface from 372 detected shapes 
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4.3 REGION GROWING 

Region growing is a bottom-up approach for segmentation, which starts by selecting a seed point 
and sequentially grows the segment following certain homogeneity criterion. If a neighboring 
pixel is consistent with the homogeneity criterion then it is added to the segment. When a 
segment stops growing a new seeds point is selected and then same region growing procedure is 
applied to each seed point. Region growing has been extensively used in segmentation of 2D 
images. A comparative study related to region growing based segmentation algorithms is 
presented in [33]. 

The two important factors in the region growing algorithms are the selection of the seeds and 
the definition of homogeneity criterion. In the context of the point cloud segmentation, the 
homogeneity criterion is commonly based on geometric properties like planarity, curvature and 
surface normals. Seed points are quite often selected randomly [34, 35], but it can also be chosen 
based on other criterion e.g. low residuals of plane fitting [5, 36], local maxima of DSM [9]. 

 

4.3.1  “SEGMENTATION BASED ROBUST INTERPOLATION- A NEW APPROACH TO 
LASER DATA FILTERING” 

Tovari and Pfeifer [35] present a segmentation based interpolation method by classification of 
terrain and object points. In the first step a region growing based segmentation is performed and 
then robust filtering is applied to the segments. This method combines the strengths of point 
based and segment based filtering approaches. In the preprocessing step normal vectors are 
estimated for each point. Then the region growing algorithm randomly picks a seed point and 
checks the n nearest neighbors for the following criterion after estimating the plane for the 
current segment.  

 Similarity of normal vectors  
 Distance of candidate point to the adjusting plane  
 Distance between current point and candidate point  

 
Points are added to the segment if they are within some pre-defined threshold for these 
criterions. The growing of the segment continues until no more points fulfill the above 
mentioned criterion. The ground, roofs and walls are correctly segmented. Also objects e.g. 
chimneys, power lines, vegetation and vehicles result in different segments. Additionally the 
different parts of the terrain have been split into different segments based on the respective 
break lines as shown in Fig. 6. 
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Fig. 7: Segmentation result of the region growing algorithm 

 

The segments from the region growing method are then used for robust interpolation of the 
terrain. Initially all the segmentation are assigned equal weight. Then the ground surface is 
iteratively determined and the weights for each segment are recomputed. A moving least 
squares method using a first order polynomial is used for surface computation. Weights for the 
next iteration are computed based on the distance from the observed point to the interpolated 
surface, which is positive if the point is above the surface and negative when the point is below 
the surface. The average value of this distance for object segments would be high positive value. 
Thus iteratively segments are classified as objects or terrain and for the object segments the 
weight is set to zero for moving least squares surface interpolation.  

 

4.3.2 “SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT” 

Rabbani et al. [5] present an automatic point cloud segmentation method where the local 
smoothness value is used for segmentation.  The smoothness value is expressed as residual 
computed from the normal estimation for each point using either a fixed distance or k-nearest 
neighbors. It has been shown that the residuals of the plane fitting are indicator of curvature of 
cylinders (cylinders of different radii). A bottom up approach for segmentation using region 
growing is employed. 
 
Two parameters a) residuals of normal estimation and the angle between the normal vectors are 
used to provide a tradeoff between under and over segmentation.  The algorithm is tested on 
point clouds from industrial scenes which mainly contain planar and curved surfaces of different 
radii. The proposed algorithm performs well in segmenting objects of different curvature. 
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Fig. 8 Flow chart of the segmentation algorithm 

 

4.3.3 “OBJECT SEGMENTATION WITH REGION GROWING AND PRINCIPAL 
COMPONENT ANALYSIS” 

Roggero [34] propose a segmentation technique which combines region growing with principal 
component analysis (PCA). The distribution of the points in the 3D space for an object is 
representative of its geometrical properties. PCA finds dominant patterns in the observations by 
representing the observations in terms of orthogonal vectors called principal components, 
where the first principal component represents the direction of the largest variance in data and 
the successive principal components represents descending variance along the orthogonal 
directions. 

Segmentation is based on region growing procedure where a seed point is selected arbitrarily 
and new points are added to the segment if they fulfill certain criterion.  These criterion involve 
geometric descriptors of the points which were computed with the help of PCA. The geometric 
descriptors mentioned are static moment, curvature and junction of surfaces. In the first step 
geometrical descriptors are computed for each point and then using the region growing 
algorithm points were aggregated into the segments based on the distance from certain 
descriptor.  

 

4.3.4 “CLASSIFICATION AND SEGMENTATION OF TERRESTRIAL LASER SCANNER 
POINT CLOUDS USING LOCAL VARIANCE INFORMATION” 

Belton and Lichti [37] present a segmentation method based on the covariance analysis of a local 
neighborhood of points similar to Roggero’s [34] approach mentioned before. The eigenvectors 
of the covariance matrix correspond to the principal components of the point neighborhood and 
the eigenvalues correspond to the variance in the corresponding direction. The amount of 
variance in the normal direction is an indication if the points belong to a surface. However the 
difference in the density and the distribution of the points from laser scanning makes it difficult 
to find appropriate threshold for variance. The ratio of the variance in the normal direction to 
the sum of the total variance in the neighborhood is often used to solve this problem. This 
quantity represents the curvature in the neighborhood, which can be used to determine if the 
point belongs to a planar surface. However this method is sensitive to highly curved surfaces 
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which may lead to misclassification. Therefore Belton and Lichti classify points based on the 
variance of the curvature in a neighborhood. This will classify objects with similar curvature into 
one class. The boundary points are detected by using the distance between the centroid of the 
neighborhood and the location of the subject point. This classification of the surface and 
boundary points is then transformed into a segmentation using a region growing algorithm. 
Additionally the intersection points between two surfaces are detected by computing the 
intersection points of two fitted planes on the surface edges.  
 

 

Fig. 9 Left: Segmentation result on a scene from industrial plant, Right: Detected intersection 
points  

 

4.4 GRAPH PARTITIONING 

The concept of Graph cuts for image segmentation was introduced in [38], which has been 
extended to Normalized Graph Cuts in [39]. The idea of graph based segmentation has also been 
applied to point cloud segmentation in [40-42] . The pixels in the image or the points in a point 
cloud can be represented as nodes of a graph and the edges of the graph can represent a 
similarity measure between the nodes of the graph based on geometric or radiometric 
primitives. A large similarity between the nodes means large weights. A graph (V,E), where V 
denotes the nodes of the graph and E denotes the edges  (e.g. based on 4-neighbourhood in 
images), can be partitioned into disjoint A,B by removing the edges joining the two parts. A 
graph cut is the total weight of the edges of the graph that have been removed for partitioning 
[39]. 
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The optimal partitioning of the graph minimizes this cut value. Graph cuts is a top down 
approach which divides the input graph into two segments. For further partitioning, graph cuts 
can then be applied iteratively to further subdivide each of these segments.  The graph cut 
partitioning encourages separation of small set of nodes [39]. A normalized graph cuts algorithm 
obviates this behavior by also taking in consideration the total number of the edge connection in 
the graph [39]. 
 

 

where  is the weight of connections from A to all other nodes in 
the graph and  is the weight of connections from B to all other 
nodes in the graph. The denominators value discourages the partitioning with only few nodes 
[43]. 

 

4.4.1 “MIN-CUT BASED SEGMENTATION OF POINT CLOUDS” 

Golovinskiy and  Funkhouser [42] present a graph min cut based method to segment a point 
cloud into a foreground and background object. Given an object location, this method finds 
points which belong to this object and the rest of the points are treated as background. First a 
ground plane is estimated by iterative plane fitting and the points close to the ground are 
removed. Then k-nearest neighbor graph is constructed where the edges of the graph has 
weights which decrease with distance. The algorithm requires two inputs: a 2D location and a 
background radius (a horizontal distance where it is assumed that background begins). 
Furthermore two methods of computation are presented. In the first method the background 
radius is selected automatically within a range and in the second method a user defines hard 
foreground and background constraints which are taken into account by min-cut algorithm.   
The results of min-cut based segmentation are compared with ground truth segmentation, 
which is created using an interactive segmentation tool. The quantitative analysis of the results 
are given using the ratio of correct predicted foreground points to the total number of predicted 
foreground points and the ratio of foreground points which are correctly predicted to the 
number of foreground points in the ground truth. 
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Fig. 10 Effect of different background radius: Depending on the object the background radius 
needs to be adopted 

 

4.4.2 “SEGMENTATION OF FULL WAVEFORM LIDAR DATA FOR SINGLE TREE 
DETECTION USING NORMALIZED CUT” 

Reitberger et al. [7] use normalized graph cut based segmentation for detection of single trees. 
The region of interest is sub-divided into voxels and these voxels are represented as a graph. The 
similarity between the voxels is represented by the weights between the nodes of the graph. 
These weights are computed based on the Euclidean distance between the voxels and the full 
waveform feature similarity. The experimental and reference dataset is from Bavarian Forest 
National Park. The full waveform ALS data was acquired in 2006 with a point density of 25 
points/m2. 

 The normalized graph cut is applied hierarchically over the voxel space represented as a graph. 
Each graph G is divided into two new graphs G1 and G2 using normalized cuts, if the number of 
voxels in each graph is greater then a predefined number. Then G1 and G2 are further 
subdivided into two graphs using normalized cuts. This procedure is stopped if the value of 
normalized cuts exceeds certain threshold.   

This method of single trees detection using normalized cuts is compared with the conventional 
method of detecting single trees using canopy height model (CHM) [44]. The method of 
normalized cut is able to detect small trees under the crown of a tall tree. Additionally 
normalized cuts distinguished individual trees in close neighborhood better than the method 
based on CHM. 
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Fig. 11 Segmented individual trees 

 

4.5 MISCELLANEOUS 

4.5.1 TENSOR VOTING 

The concept of Tensor voting for extracting geometric features was introduced by Guy and 
Medioni [45]. Tensor voting is a model free non iterative algorithm, which can be used to 
categorize the point-ness, curve-ness and surface-ness of each data point [46]. Each input site is 
represented as a second order symmetric tensor and the communication between the sites takes 
place through the process of voting. Tensor votes from other sites are added at each site 
location. The resultant tensor then encodes the geometrical information about that site. The free 
parameter in the tensor voting is the scale of the field. Tensor voting has been applied for point 
cloud segmentation [47, 48], motion segmentation [49], registration of 3D points [50] and 
epipolar geometry [49, 51].    

The second order tensor can be visualized as a 3D ellipsoid. This can be written in the following 
form [46, 48]: 
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Where ,  and  are the eigenvalues (    ) and vectors ,  and  are the 
corresponding eigenvectors, representing the  directions of the principal axes of the ellipsoid. 
The above form of the tensor can also be written as: 

 

In this form   represents a stick,  represents a plate and 
 represents a ball. While  represents point-ness,  represent 

curve-ness and  represents surface-ness [45, 51]. This is graphically shown in the Fig. 
11. This tensor information at each data point is exchanged with the neighbors using ball, plate 
and stick fields whose magnitude depends on the orientation and decreases with distance from 
the source. For each point in space these tensor fields of individual sources are added up which 
gives the resultant tensor values at each point. These dense vector fields can then be used to 
generate features like junction, curves and surfaces.  

 

 

Fig. 12: Decomposition of tensor into point, surface and curve elements 

 

4.5.2 “SEGMENTATION OF LIDAR DATA USING THE TENSOR VOTING FRAMEWORK”  

Schuster [48] presents a Tensor voting based method for segmentation of Lidar into line 
elements, surface patches and volumetric elements. The data points are encoded as initial 
ellipsoid based on the confidence ellipse of the measured data. In order to obtain a dense tensor 
field, the space of the point cloud is sampled in a grid and the tensor values are interpolated at 
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each grid point using the tensor voting from original sparse data. After obtaining the dense 
tensor field the tensor values at each grid point are decomposed into point, surface and curve 
field part, which are then investigated separately to compute e.g. line and surface features. The 
maxima of the point field can be computed by simply finding the maxima of the smallest 
eigenvalue of the tensor. The most probable surface and curve points are computed using the 
gradient of the tensor field strength projected on the normal or the tangent vector.  

In order to segment planes, a region growing algorithm is used which merges neighbors of the 
points based on homogeneity criterion (minimum description length criterion [52] on the 
orientation vector of the surface part of the tensor. Fig. 14 shows the segmented facade using 
tensor voting and region growing applied on TLS data. Similarly curves are segmented using the 
difference of orientation vectors of the curve part of the tensor as a criterion for region growing. 
This method is similar to the methods of Roggero [34] and Belton and Lichti [37], where region 
growing is used for segmentation by using homogeneity criterion based on local point 
distribution. 

 

Fig. 13 Left: Terrestrial laser scan of facade Right: Segmented facade 

 

4.5.3 “STRUCTURING LASER SCANNED TREES USING 3D MATHEMATICAL 
MORPHOLOGY” 

Gorte and Pfeifer [53] present a 3D mathematical morphology based method for segmentation of 
tree stem and branches from laser scanner data. The analysis of the tree structure is performed 
in 3D raster domain comprised of voxels. For the experiments, resolution between 2 cm to 5 cm 
was used. The value assigned to each voxel is the number of original laser scanning points which 
fall in the voxel space. After rasterization, 3D mathematical morphological operation of closing is 
applied to fill in gaps due to occlusions. Similarly morphological closing is applied to fill in 
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hollow trees because the points on the tree appear on the surface of the wood. Afterwards a 
skeletonization procedure is applied to convert thickness of tree trunks and branches into single 
voxel. Then the skeleton of each tree is converted into a graph where each node is a voxel and 
the weight of the edge between the nodes depends on if the voxels share a surface, an edge or a 
point.  

 Dijkstra’s algorithm [54] is applied to the individual graph to compute the shortest route from 
each node of the graph to the root node. The shortest paths from each node to the root 
collectively form a spanning tree of the graph. The spanning tree removes any loops which may 
have formed during the previous steps. After this step each voxel is assigned a unique branch 
identification number. At this stage skeleton of each tree has been labeled into unique branches. 
Now these labels are extended to the remaining voxels from the original voxel space using 
nearest neighbor search. In the last step each of the voxel is then transferred back to laser 
points. Fig. 15 shows final result of the segmentation in to individual branches. 

 

 

Fig. 14 Left: Rasterized points (Voxels) and skeleton Middle: Skeleton segmentation algorithm 
Right: Segmented skeleton and segmented voxel space 

 

5 SURVEY OF CURRENT METHODS FOR FOREST ROADS 
DETECTION 

In this section we present some methods for road detection with focus on forest road extraction 
using lidar, which have been published in the literature. The planarity of the road surface and 
the fact that roads are on ground level have been exploited by authors for forest roads detection.  

5.1 “THE AUTOMATIC EXTRACTION OF ROADS FROM LIDAR DATA “ 
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The first step in the hierarchical classification of Clode [55] is to build a DSM using the last echo 
from the LiDAR. In order to filter out the non-terrain points a height threshold is applied to the 
DTM which removes points on trees and houses. An intensity threshold in then applied to 
differentiate grid points that lie on the roads from points that on surfaces like grass. If two or 
more road surface types are present in the subject area than separate threshold are applied to 
obtain two subsets which represents the points/pixels on the road. Morphological operations 
are then applied to fill in small holes. In order to remove car parks a threshold is applied on the 
width of the road, which successfully removes some of the car parks. A connected component 
analysis is performed to label the roads and all those patches whose area is less than pre-defined 
threshold are removed.  
 

 
Fig. 15 Left: Point on DTM, Middle: Points after intensity filtering, Right: Resulting road network 

 
 

21 
 



 

5.2 “ROADS AND BUILDINGS FROM LASER SCANNER DATA WITHIN A 
FOREST ENTERPRISE” 

Rieger et al. [56] propose a semi-automatic method to detect roads in dense forest based on 
digital terrain models. ALS data over a hilly region south of Vienna is used as the test data. In the 
first step a DTM is created from the laser pulses, which is then used to create a digital slope 
model which represents the elevation angle of surface normal at each grid point. This slope 
model is then converted into a digital image where the grey levels represent the slope of the 
terrain.  The break lines in the DTM represent abrupt changes in the slope, therefore they can be 
used to detect roads in the DTM.  These break lines can be detected in the slope image using an 
edge detection filter. An edge preserving smoothing filter is used to pre smooth the edge in order 
to achieve better results from edge detection. After applying the edge detection filter, lines are 
detected using a line extracting algorithm. Depending on the topography of the area these lines 
would appear broken. Therefore a semi-automatic process exploiting  “snakes” [57] is used to 
bridge the gaps and provide longer line segments. Furthermore as the roads would be 
represented by two parallel line contour’s an extension to the original snake algorithm known as 
“twin snakes” [58] which gives line segments representing the sides of the roads. 

 

 

Fig. 16 Hill shaded view of the terrain model (Left), Slope model (Right) 
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Fig. 17 Detailed Slope model (Top Left), Slope model after preprocessing (Top Right), Edges 
extracted from slope model (Bottom Left), Edges extracted after preprocessed slope model 
(Bottom Right) 

 

5.3 “FOREST ROADS MAPPED USING LIDAR IN STEEP FORESTED TERRAIN” 

Russel et al. [59] present a manual method of extracting roads in forests using DEM and compare 
the results to field surveyed control points. The test site is an area, 19 km north of the City of 
Santa Cruz in the Little Creek watershed. A road centerline survey was done in the test area to 
determine the location and elevation of the target road and this data is used to analyze the 
accuracy of the road detection. In order to compute a DEM off-terrain points (e.g. vegetation) 
were removed to obtain ground points. The filtered off-terrain points comprised of approx. 94% 
of the total points. A 1m DEM was computed from the remaining points. The topographic 
features like roads, stream banks, are easily visible in the rasterized grids of slope and shaded 
relief. Over 30km of road and trail features were manually digitized using ArcMap through visual 
interpretation of these grids. A comparison with the surveyed centerline showed total road 
length of the road centerline was measured to within 0.2% and road segment slopes measured 
with a mean absolute difference of 0.53%. 
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Fig. 18 Left: Road centerline digitized from LiDAR shaded relief grid, Right: Field Surveyed 
centerline (black) and digitized centerline (red) 

 

5.4 “PATHWAY DETECTION AND GEOMETRICAL DESCRIPTION FROM ALS 
DATA IN FORESTED MOUNTAINOUS AREA” 

David et al. [1] deals with detection of roads and pathways using features like intensity, height 
variance in rasterized images of the subject area. The study area is 108ha state forest located in 
southern French Alps and the flight campaign was done in April 2007. The roads and pathways 
are ground based objects which are planar and show radiometric contrast to the vegetation. 
Therefore for detection of roads and pathways, rasterized images (1m grid size) based on 
following three features are computed  

1) Height - Pathways are ground objects 
2) Height variance – Roads and pathways are planar 
3) Intensity- Roads and pathways show different radio radiometric properties from 

vegetation 
 

Afterwards seeds points are manually or automatically chosen and the candidate pixels in 
each image are selected using a region growing algorithm based on the mean and variance of 
the region. The selected pixels in each of the three images are then merged together to 
produce a single image representing the pathways. It has been stated that the intersection of 
the three images produce the best results. Afterwards these pathways are vectorized by first 
applying a median filter on the resulting image and then applying morphological operations to 
obtain smooth pathway borders. Small pathways which are less than 5m are filtered out. 
Finally to estimate the road width and centers, 1D sections within the lidar point cloud are 
successively generated for each point of the pathways.  
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Fig. 19 Left: Elevation Image, Middle: Intensity Image , Right: Image showing masks (nDSM, 
variance σz and Intensity I), Red= [ σz ∩ I ∩ nDSM], Green=[ σz ∩  nDSM ], Blue=[  I ∩ nDSM ] 

 

6 IMAGE BASED TECHNIQUES 

In this section a brief summary of the road extraction from images using segmentation is 
presented. A survey of image based road extraction methods can be found in [60] and [61]. The 
main characteristics used for detecting roads in point cloud are smoothness and height from 
ground. In  images roads are mainly detected using characteristics like constant width, low 
curvature, connectivity  and consistent reflection properties due to similar materials used in 
manufacturing [61]. Fortier et al. [61] categorize these characteristics into Spectral properties: 
surface reflectance,  Geometric properties: width and curvature and topological properties: 
connectivity and links. 

Zhang et al. [62] classify roads based on the gray value in the intensity images. Afterwards 
mathematical morphological operations are performed to remove noise and to obtain 
continuous roads surfaces. Laptev et al. [63] propose a road detection from images using scale 
space and snakes [57]. The centerlines of the roads are extracted as lines in coarser scale, which 
initializes the snakes at fine scales. Further constraints of low curvature, consistent width and 
connectivity are checked to obtain roads in the image. 

Heipke et al. [64] present a hierarchical approach to road extraction where roads are extracted 
in low and high resolution separately and the results are combined to improve the quality of 
road detection. In low resolution roads are detected using a gray level threshold and 
connectivity. In high resolution roads are detected using edge detection and exploiting the fact 
that edges on sides of the roads should remain parallel and have constant distance. Similar 
strategy has been used by Baumgartner et al. [65, 66] to detect roads from aerial imagery. Lines 
are detected in low resolution while parallel edges are detected in high resolution. The results 
from multiple resolutions are combined to extract roads. 
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Agouris et al. [67] present a spatio-spectral clustering based method for detecting roads in 
multispectral images. In the first step clustering is applied to group pixels into clusters based on 
spectral properties. Afterwards morphological opening and component linking is applied to 
points belonging to the spectral class corresponding to roads. Haala and Vosselman [68] detect 
roads using classification using thresholding and region growing on hue of the observed image.  

7 SUMMARY 

In this report several point cloud segmentation techniques were discussed and the some 
examples of road extraction from point cloud were presented. In the end a brief overview of 
road extraction from images was presented. 

Most of the segmentation methods do not strictly fulfill the definition put forward at start of 
section 2. Often only segments (object) of interest are built, whereas the remaining point cloud 
forms one , non-connected rejection segment (class). As neighborhood systems either k-nearest 
neighbor, fixed distance neighbor, pixels or voxels are used. Features are often only spatial 
distance, distance and normal vectors, additionally local point distribution (“roughness”), 
radiometric and full waveform features are used. Comparison of segmentation results to ground 
truth is hardly performed. One reason may be that segmentation is part of a workflow for object 
identification and reconstruction which allows evaluation of higher level results. 

 Airborne laser scanning has a great potential in extracting forest roads, however there is a lack 
of robust and automatic methods in achieving this goal. . The planarity of the road surface and 
the fact that roads are on ground level have been exploited by authors for forest roads detection. 
The fusion of intensity data along with plane fitting residuals have so far given the best results in 
forest road extraction. However intensity of lidar signal is strongly dependent on the properties 
of the surface and the flight mission. Generally we need more robust measures to extract roads 
in varying terrain types. Using the calibrated surface reflectance [69] should be investigated as a 
potential remedy. 

 

 

Table 1: Neighborhood, distance and features used in given methods 

   Features 

Methods Neighborhood Distanc
e 

Position Intensit
y 

Normal 

Morsdorf et al. [9] Points     

Melzer [11] Points Yes Yes Yes Yes 

Filin and Pfeifer [16] points     
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Vosselman et al.[70] Points     

Schnabel et al.[10] points     

Toavri and Pfeifer 
[35] 

Points KNN Yes    

Rabbani [6] Points KNN Yes   Yes 

Roggero [34] Points     

Belton and Lichti [37]  Points     

Golovinskiy and  
Funkhouser [42] 

Points     

Reitberger et al. [7] Points     

Schuster [48] Points     

Gorte and Pfeifer [53] Voxel 26 
neighbors 

Yes    

Clode [55] Pixels 8 neigh   Yes  
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