A comparison of spatialisation methods for the aggregation of LiDAR forest estimates at the compartment level

Jean-Matthieu Monnet¹, Alain Munoz²

Office National des Forêts

Regarding the area-based approach, the modelling step has been widely investigated, whereas there is little documentation on the mapping step. Different options for cell size and border exclusion are investigated based on a full-census dataset.

The study area is **Prénovel** located in the Jura mountains. The forest is unevenaged, dominated by fir, spruce and beech. **Dominant** les vuillomets diameter m².ha⁻¹ PRÉNOVEL 25.0 Min. 49.6 29.5 Mean 65.3 Max. 43.7 49.9 Mean 58.0 18.0 40.1 Max. Inventory plots Used Excluded 139 nested LES PIARDS Compartments plots of 17 m Prénovel Les Piards radius Lidar survey 35 compart-

Methods

- Calibration of prediction models for basal area, stem density and dominant diameter with the areabased method.
- Mapping with different spatial supports (surface / shape / spacing)
- Aggregation into compartments with border exclusion
- Validation at compartment level • SRE: $\hat{Y}_{S,j} = \frac{1}{card(V_i)} \sum_{i \in V} \hat{y}_i$
- GREG: $\hat{Y}_{G,j} = \hat{Y}_{S,j} + \frac{1}{n_k} \sum_{k \in V_i} (y_k \hat{y}_k)$

Breidenbach & Astrup 2012. doi <u>10.1007/s10342-012-0596-7</u>

disks are used for computation and pixels for storage. Right: border exclusion threshold

Scatter plot of field

predictions for 113

measures vs LiDAR

Dominant diameter (cm) Basal area (m² .ha -1) R² = 0.88 Dominant diameter (cm) R² = 0.88 Dominant diameter (cm) Basal area (m² .ha -1) R² = 0.76 Dominant diameter (cm) Basal area (m² .ha -1) R² = 0.76 Basal area (m² .ha -1)

Results Cooperation 1

ments with full

census (380 ha)

Case with 17 m disks, 20 m spacing and 10 m buffer.

Comparison of plot-level and compartment-level accuracy

			Basal area	Stem density	Dominant diameter
			m².ha ⁻¹	ha⁻¹	cm
Plot level		R^2	0.76	0.57	0.88
		rmse	4.5	75.0	3.3
Com- par- tement level	SRE	R^2	0.85	0.76	0.91
		Bias	-0.4	-7.4	-1.2
		RMSE	1.9	19.8	1.7
	GREG	R^2	0.66	0.46	0.77
		Bias	0.0	-0.9	-1.0
		RMSE	3.8	47.0	2.1

> Scatter plot of field measures vs LiDAR aggregation for the 35 compartments

Location of forest plots and compartments

IGN BD TOPO®

Influence of mapping parameters

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

Bias (%)

y=ax+b

From the plot to compartment level, prediction error decreases from 15 to 6.4% for basal area, 26 to 7.7% for stem density and 6.5 to 3.4% for dominant diameter. The major criterion for mapping is to respect the calibration plot size, whereas for aggregation the issue of compartment borders depends on the forest parameter.

Contact: jean-matthieu.monnet@irstea.fr

-2.2

Bias (%)

